Check for
Updates

Offloading Operating System Functions to the Cloud

Zhiyao Ma, Samantha Detor, and Lin Zhong
Yale University

{zhiyao.ma, sam.detor, lin.zhong}@yale.edu

ABSTRACT

This paper questions a fundamental assumption by a modern oper-
ating system (OS): it must run in the same computer it manages.
We show that for many desirable OS functions, embedded systems
often do not have the necessary resources. By carefully offloading
some OS functions to another more resourceful computer, e.g., the
cloud, one not only immediately overcomes the local resource limits
but also opens the door for interesting optimizations because the re-
mote computer becomes an advantageous point of aggregation and
coordination. We discuss the challenges to offloading OS functions
and their potential solutions. We also share some preliminary re-
sults of offloading system initialization logic and dynamic memory
management from a microcontroller-based embedded system.

1 INTRODUCTION

An OS manages the resources of a computer. It is assumed that the
OS runs on the same computer as it manages. This paper questions
that assumption and makes a case for offloading (at least some) OS
functions to another computer, e.g., the cloud.

We reached this position through our experience of porting an
experimental OS called Theseus to microcontroller-based embedded
systems (§2). Theseus [5] can recover from transient faults and
update itself without rebooting, which makes it ideal for mission-
critical embedded systems. To achieve this, Theseus consists of a
large number of modules (called cells) that are loaded and linked
at runtime. Cells, implemented as Rust crates, interact with each
other via clearly defined, runtime-persistent boundaries. As a result,
Theseus must maintain information about its numerous cells. The
bookkeeping data, while negligible on 64-bit machines, becomes
prohibitive for microcontroller-based embedded systems.

Our epiphany toward overcoming this problem was that the
bookkeeping data is updated and used infrequently, i.e., when a
cell is first used or reloaded for fault tolerance or live evolution.
As a result, such data, along with the logic that manages it, does
not have to reside in the embedded system. With reliable network
connectivity, a remote, more capable computer can perfectly book-
keep cells and run the logic for fault recovery and live evolution.
Extrapolating from this experience, we posit that many other OS
functions could also run in a remote computer and as a result, over-
come the resource limitation of the managed computer and create
new opportunities of optimization (§2.1).

This work is licensed under a Creative Commons Attribution International 4.0
License.

HOTMOBILE °24, February 28-29, 2024, San Diego, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0497-0/24/02.

https://doi.org/10.1145/3638550.3641127

This paper elaborates this position by discussing the challenges
toward offloading OS functions (§3) as well as design solutions for
them (§4). We present preliminary results from prototype embed-
ded systems that offload system initialization logic and dynamic
memory management as two example OS functions (§5). We dis-
cuss prior work that provides either inspirations or solutions for
offloading OS functions in §6.

2 WHY OFFLOADING OS FUNCTIONS

Theseus is an OS written in Rust aiming for resilience against ker-
nel panics and hardware transient faults, and it also supports live
evolution of all kernel subsystems without requiring a reboot, all
using the same set of mechanisms. These properties make The-
seus particularly attractive for mission-critical embedded systems
where robustness, resilience, and ease of update are highly valued.
Because ARM Cortex M-based microcontrollers are popular with
such embedded systems, we started porting Theseus from x86_64
to such microcontrollers but quickly encountered an insurmount-
able obstacle as the system ran out of memory (SRAM) and storage
(FLASH).

Runtime Linking. For fault recovery and live evolution, Theseus
maintains boundaries between cells, by linking the cells at runtime.
However, the binary must contain substantial additional data (>50%)
to facilitate linking at runtime, which is only consulted during link-
ing operations. Specifically, all object files in Theseus must keep
additional sections for runtime relocation, including the symbol and
relocation table, i.e., the . symtab, .strtab,and .rela. » sections.
As shown in Table 1, these sections account for more than 50% of
the binary size, yet are consulted only while linking. Theseus does
not employ position-independent code (PIC) but performs abso-
lute relocation at runtime; as a result, it eschews dynamic symbol
sections .dyn« and dynamic relocation section . rel.dyn for con-
ventional dynamic linking which is based on PIC. We note that
microcontroller-based embedded systems usually do not support
runtime linking at all so they suffer from neither overhead.

Moreover, bookkeeping data for runtime linking also occupies
significant memory, because Theseus tracks the addresses of loaded
object sections, the inter-object dependencies, and their exported
global symbols. 58.4% of the . strtab section stores global symbol
names, which Theseus maintains in memory. Considering that the
memory on microcontrollers is about 10 times smaller than the stor-
age, even though the code and read-only data can be kept in flash,
global symbols can occupy the whole memory by itself. Even worse,
Theseus employs nested namespaces, providing different visibility
to linked objects in each namespace to support live evolution. To
ensure efficient retrieval of global symbols, Theseus incorporates a
hash table into each namespace, leading to multiple copies of public
symbol names thus significant memory consumption.

https://doi.org/10.1145/3638550.3641127
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638550.3641127&domain=pdf&date_stamp=2024-02-28

HOTMOBILE °24, February 28-29, 2024, San Diego, CA, USA

Table 1: Relative sizes of sections of Theseus. We note those of
the Linux kernel are very different because the Linux kernel
is statically linked and does not support fault recovery and
live evolution as Theseus does.

Section name Size percentage

.text 34.76%
.data 0.12%
.rodata 6.93%
.symtab 5.32%
.strtab 17.76%
.rela.~* 26.96%
.eh_frame 7.15%
.gcc_except_table 1.01%

Error Handling. Theseus, like most OSes, includes extensive error
handling paths in the code for robustness, which are rarely exe-
cuted. Unlike most OSes, Theseus handles kernel panics through
unwinding the stack, which requires extra sections in the object
files called .eh_frame and .gcc_except_table. The former is
the unwinding table used to recover callee-saved registers while
back-tracing each function. The latter contains pointers to landing
pads that are the code to invoke object destructors during unwind-
ing. These sections are only consulted when there is a panic, but
account for more than 8% of the binary size. The rarely executed
portion of .text plus the two sections for unwinding can account
for 35% of the binary size.

Dynamic Memory Management. Theseus employs a single heap
for system-wide dynamic memory allocation. Memory allocated
from the heap almost always incurs a bookkeeping overhead. Most
heap implementations include a header in each memory chunk,
which records the chunk size and possibly other data to facilitate
fast free chunk lookup or merging. Because the memory allocation
typically requires 4-byte alignment, the header will be at least
4-byte each. For a typical allocation size of around 36 bytes on
microcontrollers, the 4-byte overhead can lead to 10% memory
waste.

2.1 Benefits of Offloading OS functions

Our experience described above compels us to reach the idea of of-
floading because both the resource constraints of embedded systems
and the resource usage by Theseus’ fault recovery and live evolu-
tion mechanisms appear to be fundamental. Offloading appears to
be particularly suitable for solving the challenges we encountered
because much of the bookkeeping data and error handling logic is
only needed occasionally, e.g., when a new task is created, a fault
is detected, or a new kernel update is applied.

Extrapolating from the case of porting Theseus, we posit that
many other OS functions could also run on a remote computer.
Once we have reached the idea of offloading OS functions, we
realize there are other benefits, beyond overcoming the resource
constraints of the managed computer.

Central Aggregation & Coordination. When multiple computers
offload OS functions to the same remote computer, the remote

41

Zhiyao Ma, Samantha Detor, and Lin Zhong

computer conveniently becomes a central point for aggregation and
coordination, which enables otherwise impossible optimizations.
For example, when Wi-Fi access points are in a dense deployment,
locally selected channels are usually sub-optimal [8]. If all access
points offload their channel selection function, usually part of the
radio driver, to the same remote computer (or cloud), the latter can
easily find the globally optimal channel assignment.

Seamless OS Function Evolution. Updating an OS function is
known to be tricky and often requires rebooting. This, unfortu-
nately, creates a tension between updating the OS, to make new
features available or to fix a newly discovered vulnerability, and
disrupting the operation (and usability). In practice, this means
many OS updates are not applied timely. Offloading would make it
possible to deploy an OS update in a way transparent to the users
of the managed computer.

Better Security. Embedded systems, such as IoT devices, are no-
torious for their lack of security, partly because each of them has
to defend against all the vulnerabilities associated with its OS and
there are a large number of them out there. By offloading OS func-
tions to the cloud, one reduces the OS code inside an embedded
system, reducing its attack surface and shifting the responsibility of
defense to the cloud. Furthermore, there has been a growing inter-
est [6, 14, 30, 31] in mediating how the OS accesses user data, not
trusting the OS at all. Recent work [20] has demonstrated that even
the Linux kernel can properly function without unmediated access
to local resources. By relocating the OS to an external machine,
local software can oversee and regulate all operations from the
remote OS, effectively preserving user privacy and even rendering
side-channel attacks infeasible.

3 CHALLENGES

Offloading OS functions splits local software into a distributed
system and as a result, subjects the OS itself to the challenges
known to distributed systems, including existing application logic
offloading work (See §6). We next elaborate on these challenges in
the context of OS functions.

Latency. The obvious first challenge is the latency introduced by
offloading. While a local OS function is available via a function call
(or syscall), an offloaded OS function will add the latency from the
network stack (on both ends of the network) and the network itself.
That is, it suffers from the latency of a remote procedure call (RPC),
i.e., 1s to 100s of milliseconds, instead of that of a function/system
call, i.e., 10s to 1000s of nanoseconds.

Existing techniques to hide network latency may not be directly
applicable in the case of OS function offloading. Batching or pipelin-
ing would be infeasible if operations depend on each other, like
when a driver manipulates hardware registers. Executing OS func-
tions speculatively is also not realistic since identifying application
patterns and supporting OS operation roll-back can greatly increase
system complexity. Caching, however, remains an applicable tech-
nique, which we discuss further in §4.

We argue that the challenge of network latency also may not be
as bad as it initially appears. First of all, with the wide deployment
of 5G mobile networks and their much improved wireless link
latency (a few milliseconds) and potential deployment of edge data

Offloading Operating System Functions to the Cloud

centers, the network latency to access an OS function in an edge
data center will be within 10 milliseconds. Second, performance loss
due to offloading may be acceptable, especially for OS functions
that are not invoked frequently or in the critical path, such as
fault recovery and live evolution logic. We also note that for many
resource-constrained embedded systems, absolute performance is
usually less important than predictability. Finally, we can tap the
rich literature that deals with the overhead of syscalls, e.g., [29],
and that of RPCs, e.g., [16, 27].

Disconnection. Worse than network latency, offloading also sub-
jects OS functions to potential disconnection. This is particularly
true for mobile and embedded systems that often rely on wireless
networks. Disconnection may result in a system-wide stall in the
case of OS function offloading, in contrast to affecting a single ap-
plication when it relies on offloaded logic. Again, we note that 5G
mobile networks promise much wider and more reliable coverage.
Ironically, because many mobile and IoT services rely on their cloud
end, they would become useless when disconnected, regardless of
whether an OS function is available or not. On the other hand,
drawing inspiration from disconnected operation from the Coda file
system [17], one can cache OS function results locally to cope with
intermittent disconnections, an idea we will explore further in §4.2.

Development. An OS function does not work in isolation: it in-
teracts with other OS functions via function interfaces and global
data structures. Offloading it invites the same set of considerations
faced by offloading application logic. Ideally, the boundary of the
offloaded function should be narrow and its interface with the rest
of the OS well-defined. Related, the remote computer is likely to use
a different CPU architecture and a different OS. One cannot simply
take the OS code and expect it to run on the remote computer. In
§4.1, we will discuss how virtualization technologies can be used
to ease this challenge.

Trust. Offloading OS functions demands a secure and authen-
ticated connection between the local and remote computers. An
insecure connection invites the attacker to gain privileged access to
the local computer. Similarly, sensitive information may be leaked
if the attacker pretends to be either party. Mutual transport layer
security (mTLS), championed by recent research [24, 28], stands
out as a promising solution, ensuring bidirectional authentication
and secure connection. Additionally, a low-cost hardware root of
trust [10] is necessary for preventing credential forgery.

4 DESIGN CONSIDERATIONS

We next visit major design issues concerned with OS function
offloading, especially in the context of the challenges identified
above.

4.1 Enabling Technologies & Mechanisms

We visualize the possibilities of OS function offloading as a contin-
uum depicted in Figure 1. At the left extreme is the conventional OS
design in which all functions remain local. At the right extreme is a
completely disembodied OS, wherein most of the OS functions run
on the remote computer. Between these two extremes, design points
exist where different subsets of OS functions may be offloaded, de-
pending on the application and deployment context. As more OS

42

HOTMOBILE °24, February 28-29, 2024, San Diego, CA, USA

0s Partial OS Full OS
Local Offloading Disembodiment
i >

More Functions to the Cloud

Figure 1: A continuum of OS function offloading between two
extremes: (left) completely local OS and (right) completely
remote OS. When an OS function is offloaded, we say it is
disembodied.

functions are offloaded, the dependency on the network intensifies,
and system complexity increases. We next discuss technologies to
possibly address these challenges.

Persistent Network Connectivity. The managed computer requires
constant network access to a remote computer for OS functions.
This can be achieved by incorporating network support into the
managed computer’s boot/reset handling logic, typically located in
non-volatile memory, e.g., Flash in microcontrollers. In Theseus [5],
this includes the nano core, a small module that is loaded upon
reset/boot and is responsible for loading other modules.

Network-based Privileged Access. OS functions often require priv-
ileged access to the managed computer. As a result, the remote
computer running an offloaded OS function must have such privi-
leged access over the network. This access can be supported with
privileged local logic, or with hardware support to potentially by-
pass the local CPU for efficiency. For example, in ARM microcon-
trollers, the debug port interface provides direct access to SRAM
and memory-mapped peripherals without engaging the local CPU,
which is actually used by ARM semihosting [3]. For more powerful
computers, remote direct memory access (RDMA) and compute
express link (CXL) similarly allow remote memory access without
engaging the local CPU. We note such network-based privileged
access is more fine-grained than what is afforded by technologies
such as over-the-air (OTA) updates and network boot, which allow
the entire OS image to be replaced.

Virtualization. Virtualization technologies can address the devel-
opment challenge discussed in §3. First of all, the remote computer
can employ a virtual machine to provide an identical system envi-
ronment as the managed computer. One step further, the remote
computer can maintain a digital twin [22] of the managed computer
so that the transplanted OS function can run as if it were inside
the managed computer. Moreover, research in OS-level virtualiza-
tion [18] has discovered opportune boundaries inside mainstream
OSes that can be exploited to decouple OS functions. For exam-
ple, the device file boundary has been shown to be effective in
decoupling device drivers from the rest of the OS [1, 2].

4.2 Useful Principles

We next consider several well-known design principles for deter-
mining what OS functions to offload and for optimizing their per-
formance once offloaded.

HOTMOBILE °24, February 28-29, 2024, San Diego, CA, USA

Separation of Data vs. Control Planes. The data plane is where
frequent, performance-sensitive actions take place, often in a dis-
tributed, uncoordinated manner, while the control plane is where
infrequent operations happen, often in a logically central place.
While this principle is widely practiced in software-defined net-
works, it has seen adoption by the software systems community.
For example, in Arrakis [25], the OS itself is considered part of the
control plane. By applying this principle to an even finer granular-
ity, one can identify control plane functions in the OS as candidates
for offloading. For example, the virtual memory subsystem can be
considered as part of the data plane because all memory accesses
have to go through it. In contrast, heap management can be con-
sidered a part of the control plane because it is invoked when new
memory needs to be allocated.

Separation of Knowledge and Logic. The rule of representation [26]
suggests to “fold knowledge into data, so program logic can be
stupid and robust” Our experience with Theseus indicates that
an OS often contains a lot of knowledge, both static (about the
system) and dynamic (about resource usage). Knowledge that is
infrequently consulted (along with the logic manipulating it) could
be an excellent candidate for offloading. And the performance im-
pact due to offloading can be ameliorated by caching, as discussed
below.

Caching. To cope with the network latency and potential discon-
nection, the managed computer can cache some of the offloaded
knowledge, logic, or the output of such logic. For example, as we
will show in §5, an embedded system can cache a small number of
heap allocations locally to substantially improve the performance
when the heap management is offloaded. This caching mechanism
introduces an interesting tradeoff between performance and local
resource usage and brings new opportunities for optimization. For
example, the locally cached data can be updated speculatively by the
remote computer without engaging the local CPU, using hardware
support for remote direct memory access.

4.3 OS Functions to offload

We next examine several OS functions (subsystems) as candidates
for offloading.

Device Drivers. Drivers are known to be a major source of vul-
nerability and incompatibility. There have been various attempts
to ship drivers away from the kernel itself. For example, micro-
kernel operating systems “offload” drivers into the user space as
processes [15]. LeVasseur et al [19] “offload” a driver into a virtual
machine. With these efforts in mind, offloading to a remote com-
puter only appears to be a logical next step and allows the same
benefits without the resource taxation on the local computer.

Error Handling. From our experience of porting Theseus to ARM
Cortex-M microcontrollers, it is obvious that the bookkeeping data
and logic for error handling are excellent candidates for offloading:
they consume a lot of resources but are only used infrequently, e.g.,
when a fault is detected or when a kernel update must be applied.

Heap and Stack Management. Heap management can be offloaded
as we will show in §5. With that, it is further profitable to offload
stack management. The segmented stack provides an alternative

43

Zhiyao Ma, Samantha Detor, and Lin Zhong

HC-05 Bluetooth Module

/(/‘-_ i

STM32F4-Discovery Board

‘v

Figure 2: STM32F4-Discovery board connected with HC-05
Bluetooth module over UART, running a music player appli-
cation and communicating with the server through HC-05.

by dynamically allocating stacklets from the heap, providing better
memory efficiency than the conventional contiguous stack [21].
Once the heap management is offloaded, it is straightforward to
further offload both the logic and bookkeeping data for stacklet
allocation, allowing sophisticated solutions to run in the remote
computer to achieve higher memory efficiency in the managed
computer.

Runtime Linking. The remote computer can manage the mapping
between symbol names and their runtime addresses, where symbol
and relocation sections in compiled objects are entirely offloaded.
The remote computer performs the relocation and sends the linked
binary to the local one. If a small modification to the relocation is to
be made, the local computer receives directives from the remote one
for the adjustment. Most of the time, applications do not require
symbol information at runtime. However, in rare instances when
it is necessary, the symbol query can be redirected to the remote
computer.

5 PRELIMINARY IMPLEMENTATION

We experiment with a microcontroller-based embedded system to
offload two OS functions. The first is system initialization, which is
ideal because it is invoked only once per boot cycle and exhibits a
higher latency tolerance. Our result highlights the potential of con-
serving storage through offloading. The second is dynamic memory
management, which is substantially more ambitious because it is
used frequently and often on the critical path of performance. It,
however, allows us to expose challenges when moving rightwards
along the offloading continuum depicted by Figure 1. Our findings
indicate that caching can effectively counteract network latency.

5.1 System Initialization Code

We experiment with offloading system initialization code with a
music player application developed for STM32F4-Discovery board
written in C. We connect the board with a laptop PC acting as the
server through Bluetooth. The system is shown in Figure 2. Upon
boot-up, the board fetches the initialization code on-demand. Given

Offloading Operating System Functions to the Cloud

Header Footer
\ I
Preamble |Type|Length Data | Checksum | Postamble
Bytes: 2 1 1 0-254 2 2

Types: Start, End, ACK, NACK, Data (odd/even)
Preamble/Postamble: 0x7e7e

Figure 3: UART packet layout.

the transient nature of the initialization code, the board stores the
code in the SRAM for execution and subsequently discards it. Other
persistent code is stored in the flash and is executed in place.

The board requires preliminary initialization prior to fetching
the code. Specifically, the board communicates with the HC-05 Blue-
tooth module via UART. The module forwards every byte between
the Bluetooth radio and the UART lines. Since the HC-05 module
retains its configuration across boot cycles, the board’s boot-up
procedure need only include the logic to enable the clock for the
peripheral bus and to configure the GPIO pins for UART. The board
also starts the system clock SysTick during boot-up to allow timing.

Since the UART connection is unreliable, we develop a simple
protocol on top of UART to provide a reliable connection. UART
transmits individual bytes at the bottom. We group bytes into pack-
ets, each bracketed by a header and a footer, as shown in Figure 3.
Any byte in between the preamble and postamble that happens
to be 0x7e will be escaped by prefixing the escape byte 0x7d. The
sender starts or ends a session by sending a start or end packet,
respectively. The sender re-transmits a packet upon timeout wait-
ing for the ACK or if the receiver responds with NACK upon incorrect
checksum. To prevent the receiver from getting duplicated data,
the data packet type alternates between odd and even.

We allow convenient migration to offloading initialization code
by compiling two binaries from a unified code base: the local bi-
nary to be stored on the board that contains the boot-up logic
and the music player application code, and the offloaded binary
to be stored on the PC containing the logic to initialize periph-
erals for the music player. Any function, independent of its final
placement in either binary, can be defined in any source file. In
practice, the local binary contains functions reachable from main ()
while the offloaded binary from offloaded_main (). To achieve
this, we first compile each function into a separate ELF section
using the -ffunction-sections compiler option. Subsequently,
we enable the —~gc-section linker option, keeping only the sec-
tions reachable from a given entry point into the linked binary.
Kept code sections are merged back into a single .text section.
The developer willing to offload initialization code needs only call
initialization code from offloaded_main (), with other code re-
maining unchanged. Our framework provides a run_offloaded ()
function that downloads, runs, and finally discards the offloaded
binary.

Our current implementation takes 1024 bytes on the board to
store the UART initialization and the reliable transmission protocol
logic. This overhead is constant and independent of the applica-
tion running on the board. As for the music player application, the
offloaded binary containing the peripheral initialization logic is

44

HOTMOBILE °24, February 28-29, 2024, San Diego, CA, USA

1080-byte large. We expect greater storage savings for more compli-
cated applications. Fetching the offloaded binary takes on average
below one second.

Our current implementation has two limitations. First, functions
duplicated in the local and offloaded binaries waste SRAM. The
offloaded binary of the music player application contains 40 bytes of
duplicated functions. Second, similar duplication of static or global
variables may introduce runtime error, because modification to a
global variable in one binary will not be reflected in the other one.
This can be solved by generating a linker script for the offloaded
binary that contains symbol addresses of the functions and global
variables from the local binary. The script will allow overriding the
definitions in the offloaded binary and point them to the one from
the local binary.

5.2 Memory Allocator

We next share some preliminary results from our attempt to offload
dynamic memory management from STM32F4-Discovery board
to a server, as part of our bigger effort to bring Theseus-like fault
tolerance and live evolution to embedded systems. We chose to
start with heap management because it has a very simple API
(malloc/free) and its performance can be easily quantified.

At initialization, the microcontroller reports the memory region
to be utilized as the heap to the server, which in turn creates the
necessary data structures to manage allocated and free chunks. Soft-
ware on the microcontroller uses the familiar malloc and free
APIs to acquire and release heap memory. A library converts these
function calls into remote procedure calls to the management pro-
cess on the server.

We experiment with the idea of cache (§4.1) and are interested in
how it may help cope with network latency and disconnection. For
heap management, the cache saves recently freed heap allocations.
When local software calls malloc, the cache will be consulted
first. Only when no saved allocation can satisfy the request, it
will be forwarded to the server. When local software calls free,
the allocation will be returned to the allocation cache, which may
evict entries by invoking the heap manager on the server. When
disconnection happens, malloc can block or return failure if the
request cannot be satisfied by the cache; free will be buffered until
the connection is re-established.

Using artificial traces, we evaluate the efficacy of the cache in
combating network latency, by varying the cache size and injecting
network latency. We observe that a small cache can be highly ef-
fective in overcoming the performance impact of network latency.
Specifically, we find that when the cache size is slightly larger than
the average number of active allocations, the impact of network
latency becomes negligible. Figure 4 shows the results from one of
the settings we have tried. In this setting, the intervals between two
consecutive malloc requests follow an exponential distribution
with a mean of 100 us, while the lifetime of allocated chunks follows
a uniform distribution between 500 and 1500 ps. The allocation size
follows a normal distribution with a mean of 36 bytes and a stan-
dard deviation of 8. In this setting, the average number of active
allocations is about 10.

Given that the network latency is orders of magnitude greater
than the allocation interval, a moderate cache miss rate causes a

HOTMOBILE °24, February 28-29, 2024, San Diego, CA, USA

105

—+— Cache 16
—&— Cache 24

—«— Cache 0
—+— Cache 8

104,

103 1

102

Program Execution Time (s)

10 " ; . ,
V] 2 4 6 8

Network Latency (ms)

10

Figure 4: Impact on execution time of network latency and
cache size. The cache effectively counters the impact of net-
work latency. The effectiveness of cache is highly dependent
on its size, while it can almost fully absorb the allocation
request with moderate size.

substantial rise in execution time, as seen when the cache size is
8 in Figure 4. Increasing the cache size, however, can significantly
decrease execution time. Furthermore, a moderate size of 24 cache
entries renders the network latency’s effect on execution time neg-
ligible. Note each cache entry consists of two integers, indicating
the address and size of the allocation, respectively.

6 RELATED WORK

Microkernel and Library OS. Many have discussed where to place
OS functions inside the computer. Microkernel OSes seek to move
the OS functions out of the kernel and into the user space. Library
OSes argue that OS functions should be implemented by the ap-
plication itself as a library. While they do not discuss whether or
how to move the OS functions outside the managed computer, they
show that not all OS functions are equal and some can be placed
farther away from others. Our proposal can be considered as a step
further logically. More specifically, Chertiton and Duda [7] viewed
the kernel execution of OS functions provided by an application as
the kernel caches these functions, which, in spirit, is quite similar
to the caching mechanism we discussed for offloaded OS functions.

Distributed OS. Offloading OS functions effectively creates a
distributed system consisting of the local computer and the cloud
where the cloud plays the role of central control. Therefore, it
shares some of the challenges facing distributed systems. However,
distributed systems usually focus on providing a single abstraction
on top of distributed resources.

Computation Offloading and Thin Client. There is a rich liter-
ature about offloading computation from a resource-constrained
computer to more powerful ones, including cyberforaging [11]
and thin client [4, 23]. It focuses on offloading application logic
and its programming [9] and OS [12, 13] support. Offloading OS
functions can be considered as a special case of it, facing similar
challenges of latency, disconnection, and coherence. On the other
hand, OS functions often require privileged access and are more
performance-sensitive. Because application logic may rely on OS

45

Zhiyao Ma, Samantha Detor, and Lin Zhong

functions, offloading OS functions may create even more opportu-
nities for offloading application logic.

ACKNOWLEDGMENTS

This work is supported in part by NSF Award #2130257 and its
REU supplement. The authors are grateful for the constructive and
insightful feedback from the reviewers.

Offloading Operating System Functions to the Cloud

REFERENCES

(1]

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Ardalan Amiri Sani, Kevin Boos, Shaopu Qin, and Lin Zhong. 2014. I/O paravir-
tualization at the device file boundary. In Proc. ACM ASPLOS.

Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014. Rio: a
system solution for sharing I/O between mobile systems. In Proc. ACM MobiSys.
ARM. 2012. ARM Compiler toolchain version 5.01 update 1. https://developer.ar
m.com/documentation/dui0471.

Ricardo A Baratto, Leonard N Kim, and Jason Nieh. 2005. Thinc: A virtual display
architecture for thin-client computing. In Proc. ACM SOSP.

Kevin Boos, Namitha Liyanage, Ramla Jjaz, and Lin Zhong. 2020. Theseus: an
experiment in operating system structure and state management. In Proc. USENIX
OSDL

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves.. In Proc. NDSS.

David R Cheriton and Kenneth J Duda. 1994. A caching model of operating
system kernel functionality. In Proc. USENIX OSDL

Surachai Chieochan, Ekram Hossain, and Jeffrey Diamond. 2010. Channel as-
signment schemes for infrastructure-based 802.11 WLANS: A survey. IEEE Com-
munications Surveys & Tutorials (2010).

Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Offload. In Proc. ACM MobiSys.

Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.
Smart: secure and minimal architecture for (establishing dynamic) root of trust.
In Proc. NDSS.

Jason Flinn. 2012. Cyber Foraging: Bridging Mobile and Cloud Computing.
Synthesis Lectures on Mobile and Pervasive Computing (2012).

Mark S Gordon, David Ke Hong, Peter M Chen, Jason Flinn, Scott Mahlke, and
Zhuoging Morley Mao. 2015. Accelerating mobile applications through flip-flop
replication. In Proc. ACM MobiSys.

Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao, and Xu
Chen. 2012. Comet: Code Offload by Migrating Execution Transparently. In Proc.
USENIX OSDI

Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and
Trent Jaeger. 2017. TrustShadow: Secure execution of unmodified applications
with ARM TrustZone. In Proc. ACM MobiSys.

Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S Tanen-
baum. 2006. MINIX 3: A highly reliable, self-repairing operating system. ACM
SIGOPS Operating Systems Review (2006).

David B Johnson and Willy Zwaenepoel. 1993. The Peregrine high-performance
RPC system. Software: Practice and Experience (1993).

James J Kistler and Mahadev Satyanarayanan. 1992. Disconnected operation in
the Coda file system. ACM Transactions on Computer Systems (TOCS) (1992).
Oren Laadan and Jason Nieh. 2010. Operating system virtualization: practice and
experience. In Proc. Annual Haifa Experimental Systems Conference.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Goétz. 2004. Unmodified
Device Driver Reuse and Improved System Dependability via Virtual Machines.
In Proc. USENIX OSDL

Caihua Li, Seung-seob Lee, Min Hong Yun, and Lin Zhong. 2022. MPro-
tect: Operating System Memory Management without Access. arXiv preprint
arXiv:2212.12671 (2022).

Zhiyao Ma and Lin Zhong. 2023. Bring segmented stacks to embedded systems.
In Proc. ACM HotMobile.

Roberto Minerva, Gyu Myoung Lee, and Noel Crespi. 2020. Digital twin in the
IoT context: A survey on technical features, scenarios, and architectural models.
Proc. IEEE (2020).

Jason Nieh, S Jae Yang, and Naomi Novik. 2000. A comparison of thin-client
computing architectures. Technical Report CUCS-022-00. Columbia University.
Sebastian Paul, Felix Schick, and Jan Seedorf. 2021. TPM-based post-quantum
cryptography: a case study on quantum-resistant and mutually authenticated
TLS for IoT environments. In Proce. Int. Conf. Availability, Reliability and Security.
Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2015. Arrakis: The operating
system is the control plane. ACM Transactions on Computer Systems (TOCS)
(2015).

Eric S Raymond. 2003. The art of Unix programming. Addison-Wesley Profes-
sional.

Michael D Schroeder and Michael Burrows. 1990. Performance of the Firefly
RPC. ACM Transactions on Computer Systems (TOCS) (1990).

Jaspreet Singh, Yahuza Bello, Ahmed Refaey Hussein, Aiman Erbad, and Amr Mo-
hamed. 2020. Hierarchical security paradigm for iot multiaccess edge computing.
IEEE Internet of Things Journal (2020).

Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In Proc. USENIX OSDL

Alexander Van’t Hof and Jason Nieh. 2022. BlackBox: A Container Security
Monitor for Protecting Containers on Untrusted Operating Systems. In Proc.

46

HOTMOBILE °24, February 28-29, 2024, San Diego, CA, USA

USENIX OSDIL.
[31] Minhong Yun and Lin Zhong. 2019. Ginseng: Keeping Secrets in Registers When
You Distrust the Operating System. In Proc. NDSS.

https://developer.arm.com/documentation/dui0471
https://developer.arm.com/documentation/dui0471

	Abstract
	1 Introduction
	2 Why Offloading OS functions
	2.1 Benefits of Offloading OS functions

	3 Challenges
	4 Design considerations
	4.1 Enabling Technologies & Mechanisms
	4.2 Useful Principles
	4.3 OS Functions to offload

	5 Preliminary Implementation
	5.1 System Initialization Code
	5.2 Memory Allocator

	6 Related Work
	References

