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Abstract
Stack unwinding is a well-established approach for handling 
panics in Rust programs. However, its feasibility on resource-
constrained embedded systems has been unclear due to the 
associated overhead and complexity. This paper presents 
our experience of implementing stack unwinding and panic 
recovery within a Rust-based soft real-time embedded oper-
ating system. We describe several novel optimizations that 
help achieve adequate performance for a flying drone with 
a CPU overhead of 2.6% and a storage overhead of 26.0%
to recover from panics in application tasks and interrupt 
handlers.

1 Introduction
Fault tolerance is highly desirable for embedded systems that 
have to achieve high availability without hardware redun-
dancy. A system can cope with various types of faults, rang-
ing from language exceptions to hardware errors that mani-
fest as such exceptions, if the system returns to some good 
state. For example, checkpoint/restore is popular with server 
systems. Despite early theoretical investigation [19, 24], it 
is not widely used in embedded systems due to the high 
performance and memory overhead.
This work considers an alternative approach: return the 

system to some previous state by cleaning up the resources 
allocated since. While this is formidably difficult for embed-
ded systems written in popular languages like C, our key 
insight is that Rust, a safe language emerging in the embed-
ded world [7, 16, 23], provides a new opportunity via its error 
handling mechanism, especially panic.
The occurrence of a Rust panic indicates a fatal error: 

the program has reached an unexpected state. In embedded 
systems, a Rust panic typically results in either halting the 
system [11], optionally with messages printed [12, 13, 15], 
or trapping the execution to a hardware handler [1].
We investigate the use of stack unwinding to return a 

panicking embedded system to a good state from which it 
may recover from the offending fault. Unwinding involves
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the forced return of active functions, releasing acquired re-
sources along the way, until a catch_unwind() statement is
reached. Theseus [4], a recent Rust-based OS, features a stack
unwinder for resource cleanup. It shows promising results,
incurring approximately 34% storage overhead, but within
the context of powerful x86_64 systems.
Nevertheless, the feasibility of implementing a Rust un-

winder on embedded systems remains unclear. Indeed, Ren-
wick et al. [20] discourage the adoption of a C++ unwinder
for embedded systems due to the large storage overhead.
Other challenges for embedded systems include all interrupt
handlers sharing one call stack, the lower performance of
CPU, and the limited tolerance for memory overhead.
In this work, we address the feasibility question through

three primary contributions. (i) We describe and evaluate the
first stack unwinder implementation in the context of a soft
real-time embedded OS flying a quadcopter. (ii) We quantify
for the first time the overheads associated with stack unwind-
ing for Rust in a microcontroller-based embedded system.
(iii) We present multiple optimizations that mitigate the neg-
ative effects of Rust panic on other system components and
improve the recovery speed.

2 Background
2.1 Rust Panic
Rust panic is a type of language exception that arises when a
fatal error happens at runtime. An example of this is access-
ing an array out of bounds. Rust panic serves as a mechanism
to enforce memory safety in cases where compile-time anal-
ysis cannot guarantee the absence of memory safety viola-
tions. It complements the compile-time analysis in ensuring
memory safety by forestalling illegal memory access.

The canonical Rust programming paradigm offers numer-
ous other scenarios where Rust panics may occur. For in-
stance, when programmers assume that an Option value is
not None or a Result value is not Err, they often use unwrap()
to extract the contained value, which triggers a panic if the
assumption is wrong. Additionally, hardware abstraction
layer (HAL) crates frequently incorporate sanity check as-
sertions such as assert!() and assert_eq!(), which fail if
the hardware state mismatches the software configuration,
resulting in Rust panics.

2.2 Stack Unwinding
The stack unwinder cleans up resources when a panic oc-
curs, as shown in Figure 1. Semantically, active functions
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Table 1. Rust panics are simpler than C++ exceptions.

C++ exception Rust panic
Allowed type Any C++ class Only Panic struct
Match rule Follow subtype No subtyping
Catch argument By value or reference Only by value
Nesting Arbitrary level No nesting
Re-throw Supported Not supported

return immediately upon a panic, starting from the most
recent one and continuing until reaching a catch_unwind()

statement. Then, the code resumes execution from the first
statement after catch_unwind(). Mechanically, the code in-
vokes the stack unwinder upon a panic. The unwinder refers
to the compiler-generated static data structure known as the
exception table to understand the content of each function
call frame in the stack. Subsequently, it restores callee-saved
registers and invokes object destructors for initialized ob-
jects. The unwinder finishes upon reaching a catch_unwind()
statement, returning to the following statement.

The embedded world, however, has resisted handling lan-
guage exceptions through stack unwinding, primarily due
to concerns regarding storage/performance overhead and
the added responsibility of ensuring exception safety. Our
key insight is that Rust allays both concerns. First, Rust pan-
ics are semantically much simpler compared to exceptions
found in other systems programming languages such as C++.
Table 1 summarizes the distinctions between C++ exceptions
and Rust panics. The simplicity of panic semantics reduces
the logic necessary to support stack unwinding, making it
an appealing option for embedded systems.
Moreover, safe Rust relieves programmers of the respon-

sibility to ensure exception safety. Code is considered ex-
ception safe if the occurrence of an exception does not com-
promise its correctness. Unlike C++ in which achieving ex-
ception safety has long been known to be hard [6], in part
due to the freedom to use raw pointers, safe Rust guarantees
memory safety even in the event of a panic.

In summary, the simple semantics of Rust panic, together
with the exception safety offered by the Rust type system,
motivates us to handle Rust panics by stack unwinding in
order to enhance embedded system availability.

3 Challenges to Stack Unwinding
3.1 Performance Overheads
Stack unwinding can introduce overhead to both normal and
panicking code paths. We find the overhead in the normal
code path is small (2.6%) when an unwinder is used to handle
Rust panics. This is because Rust employs a metadata-based
panic handling mechanism: the compiler statically generates
the read-only exception table, which the unwinder references
upon panics to analyze the call stack and execute appropriate
actions. As a result, no additional logic is present in the non-
panicking code path. The slight runtime overhead may result

fn f() {
catch_unwind(|| g());
// Continue from here
// ...

}

fn g() {
// Object construction
h();
// Skip all code below
// ...

}

fn h() {
// Object construction
panic!();
// Skip all code below
// ...

}

Forced function returns
with objects destructed
until reaching catch_unwind

Stack 
Unwinder

2 Restore registers
& destruct objects

3 Restore registers
& destruct objects

4 Finish unwinding

Semantical execution
Mechanical execution

1 Invoke unwinder

Figure 1. The stack unwinder forces a series of function returns
upon a panic, with objects destructed along the returns, until reach-
ing a catch_unwind() statement.

from precluded compiler optimization when functions are
allowed to return through unwinding.
The unwinder does noticeably slow down the panicking

code path since it interprets the exception table for each func-
tion during unwinding. We introduce several optimizations
to mitigate the impact of panicking code and to expedite
recovery. Moreover, panics are supposed to be infrequent,
because Rust encourages explicit error handling and reserves
panics solely for fatal errors.

3.2 Storage Overheads
Stack unwinding also increases code size by adding landing
pads, the exception table, and the stack unwinder logic. Land-
ing pads are compiler-generated code to be invoked when
unwinding, responsible either for destructing the objects of
an active function before forcing it to return or for catch-
ing the panic. The exception table, also compiler-generated,
contains per-function, read-only data structures dictating
the actions to be taken during unwinding. The table entry
includes the operation to restore callee-saved registers and
indicates which landing pad to invoke. The unwinder logic
references the exception table to restore registers and invoke
landing pads.
Theseus [4] has already demonstrated that the storage

overhead of a metadata-based Rust unwinder is acceptable.
We calculate the storage overhead resulting from the unwind-
ing mechanism by building Theseus without it, removing
unwinding related modules and setting the -C panic=abort

compilation flag. As Table 2 shows, out of the total 3018
KB overhead, the unwinder accounts for 149 KB, represent-
ing a constant overhead. The remaining overhead arising
from the landing pads, symbol table, and exception table are
approximately proportional, on average 32%.
Embedded systems provide opportunities to further re-

duce the storage overhead. For instance, embedded ARM
defines an alternative representation of the exception table
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Table 2. Storage overhead for stack unwinding in Theseus. Code
size is the sum of all .text sections. Data includes .rodata, .data
sections and their corresponding .rel.* sections. Since Theseus
performs dynamic linking for the whole system, symbol tables
must be present in the final binaries, including .symtab and .strtab

sections. Exception tables are only present when unwinding is
enabled, including .eh_frame and .gcc_except_table sections.

w/o Unwind w/ Unwind Unwinder
Code 5141 KB 6130 KB 91 KB
Data 1471 KB 1503 KB 28 KB
Symbol table 2309 KB 2849 KB 30 KB
Exception table 0 KB 1457 KB 0 KB
Total 8921 KB 11939 KB 149 KB

Context Switch Mem Allocator Stack Unwinder

Mutex Semaphore Channel Sync
Primitives

Task A Task B Task C

IRQ X
IRQ Y
IRQ Z

RCB

Application

Figure 2.Hopter OS structure. It can recover from all panics except
those in the Reliable Computing Base (RCB).

with the exception handling ABI (EHABI) [2]. Compared to
the DWARF [9] format used by Theseus targeting x86_64,
EHABI is more compact and entails fewer variations in the
data structure, resulting in both smaller exception tables and
simpler unwinder logic.

4 Stack Unwinding in Hopter
We report our experience of implementing stack unwind-
ing in Hopter, an embedded OS designed for single-core
embedded systems, currently implemented for ARMv7-M
architecture.

4.1 Overview of Hopter
Hopter is written in Rust and requires application devel-
opers to implement tasks and interrupt handlers with safe
Rust code. Hopter provides safe synchronization primitive
interfaces to application developers, while the HAL library
supplies safe hardware manipulation interfaces. Hopter tol-
erates Rust panics originating from both tasks and interrupt
handlers.

Hopter supports multitasking by allocating one call stack
for each task running in the thread mode, whereas it uses
a single kernel stack to handle interrupts and system calls
running in the handler mode of CPU, as shown in Figure 2.
Hopter assigns priorities to tasks and interrupts. The sched-
uler or the nested vectored interrupt controller (NVIC) chooses
the highest-priority task or interrupt handler to execute, re-
spectively. Since system calls and interrupts share a single
kernel stack, a higher-priority interrupt preempts a lower-
priority one by placing its stack frame on top of the existing

let sender = |send: Producer<T>| {
loop {

// ... Prepare data ...
send.push(data);

}
};
let receiver = |recv: Consumer<T>| {

loop {
let data = recv.pop();
// ... Work on data ...

}
};

// Create a channel of type T with buffer size 8.
let (send, recv) = channel::create::<T>(8);

// Start tasks with stack size 256 bytes and priority 0.
create_restartable_task(sender, send, 256, 0);
create_restartable_task(receiver, recv, 256, 0);

Listing 1. Task synchronization using data channel.

pub fn create_restartable_task<F, A>(
entry_closure: F, entry_argument: A,
stack_size: usize, priority: u8,

) where
F: FnOnce(A) + Clone + Send + Sync + 'static,
A: Clone + Send + Sync + 'static,

{ ... }

fn restartable_task_entry_trampoline<F, A>(
entry_closure: &F, entry_argument: &A

) where ...,
{

// Run the entry closure with argument.
// Catch possible panic.
catch_unwind_with_arg(

entry_closure.clone(),
entry_argument.clone(),

);
}

Listing 2. Restartable task requires the Clone trait implemented
for the entry closure and argument. Unwinding terminates upon
reaching catch_unwind_with_arg().

ones. Hopter’s call stack organization and priority design
closely resemble those of other popular embedded OSes like
FreeRTOS [10], ThreadX [18], and VxWorks [21].
Hopter provides various synchronization primitives, in-

cluding mutexes, semaphores, and data channels. For in-
stance, in Listing 1, two tasks synchronize over a data chan-
nel. The sender sends data with push() and blocks when the
channel is full, similarly for the receiver with pop(). Addition-
ally, a task can synchronize with an interrupt handler with
either a semaphore or a data channel, where the interrupt
handler must call non-blocking methods, like force_push()

of the data channel, which discards the oldest data in the
channel when it is full.
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4.2 Stack Unwinding
Hopter supports recovery from Rust panics originating from
both tasks and interrupt handlers. The recovery is conducted
by the reliable computing base (RCB), which includes the
context switch logic, the memory allocator, and the stack
unwinder. The RCB itself, however, cannot recover from a
panic and will loop if a panic does occur within.
The unwinder leverages metadata generated by the com-

piler toolchain. For example, the compiler generates an ex-
ception table entry for each function, which is later aggre-
gated by the linker and placed in the .ARM.extab section
within the final binary. To accelerate table entry lookup for
panicking functions, the compiler also generates indices for
each function. The linker then organizes these indices in
ascending order of function addresses and stores them in the
.ARM.exidx section, facilitating fast function entry lookup
through binary search. Both the .ARM.extab and .ARM.exidx

sections are placed in the flash memory and are read in-
place, eliminating the need for them to be copied into SRAM.
This approach conserves SRAM resources while ensuring a
reasonable speed for table entry searches.
Hopter employs distinct panic recovery procedures for

tasks and interrupt handlers due to their different execution
patterns. Tasks are long-lived, often persisting throughout
the entire system boot, whereas interrupt handlers are short-
lived, activated solely during the handling of raised inter-
rupts. Therefore, Hopter actively restarts a panicking task
but silently returns a panicking handler. Tasks and interrupt
handlers also have different stack organizations: each task
enjoys a private call stack, while all interrupt handlers share
a single kernel stack. As a result, a panicking task triggers the
priority reduction of itself, but a panicking interrupt handler
causes Hopter to reduce the priority of all active handlers.

4.3 Recover From Task Panic
Hopter provides a restartable task abstraction to tolerate task
panics and applies an optimization to speed up recovery, and
Rust plays a crucial role in enabling the optimization.
Upon a panic, a restartable task invokes the unwinder to

reclaim the allocated resources by unwinding its stack and
subsequently restarts. To restart, both the task entry closure
and its argument must implement the Clone trait, as shown
in Listing 2. This requirement enables safe duplication of the
closure’s enclosed environment and the argument, allowing
for proper re-execution of the task. Unwinding of the panick-
ing task terminates upon reaching catch_unwind_with_arg(),
similar to std::panic::catch_unwind() [8].

When a restartable task panics, Hopter immediately restarts
a new instance of it, running the restarted instance and un-
winding the panicking one concurrently. Because unwinding
is slow, waiting for the panicking task to finish unwinding
before restarting it can violate the tight time constraints
of embedded applications. Hopter concurrently restarts the

panicking task by invoking the cloned entry closure with
its entry argument within a new task context. The new task
instance inherits the priority of the panicking task before it
panics. The unwinder works within the context of the panick-
ing task set to the lowest priority. This approach allows for
a swift takeover by the new task and reclaims the resources
of the panicking task by utilizing otherwise idle CPU time.
Hopter allows a single concurrent restarting instance of each
task in order not to exhaust system resources when panics
happen frequently.
Rust plays a crucial role in enabling concurrent restart

in two ways. First, the semantics of Rust panic offers the
opportunity to concurrently restart a panicking task. This
is because Rust reserves the panic only for fatal and unex-
pected conditions, in contrast to exceptions in other lan-
guages like C++ which may signal either expected errors
or unexpected fatal ones. That is, the concurrent restart
would be much more complicated, if possible at all, with
C++. For instance, the C++ standard template library func-
tion std::stoi, used to convert a std::string to an int, may
throw std::invalid_argument if the input string is not a valid
integer representation or std::out_of_range if the number
exceeds the range representable by int. A well-designed
parser should treat these exceptions as expected occurrences.
Only in the absence of a matching catch block do these excep-
tions escalate to fatal errors, leading to program termination
by invoking std::terminate(). Therefore, a system capable
of recovering from C++ fatal exceptions cannot apply similar
optimizations to immediately restart a task upon an excep-
tion being thrown, because without unwinding the stack it
remains uncertain whether the exception will be caught and
resolved or lead to task termination.
Second, Rust helps Hopter to eliminate race conditions

due to concurrent task restart. When Hopter restarts a task,
race conditions may arise when the two instances access
the same static data concurrently, even when the variable is
not shared among different tasks. Fortunately, Rust’s type
system already enforces a constraint, disallowing safe code
from accessing mutable static variables. The Sync trait is
required to safely access static variables, where they must
either be read-only or follow Rust’s interior mutability, such
as being an atomic type or guarded by a mutex. The over-
head of having mutexes is minimal in non-panicking cases
because no other task contends for the mutex protecting a
static variable accessible only to a specific task, thus the lock
operation always succeeds immediately. Similarly, variables
reachable through the entry closure and argument are safely
accessible to the concurrently restarted task enforced by the
Sync trait.
Hopter further incorporates priority inheritance to ad-

dress potential priority inversion during stack unwinding.
Priority inversion occurs when the panicking task, under-
going stack unwinding at the lowest priority, holds a mutex
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that other tasks, including the restarted one, attempt to ac-
quire. To resolve the priority inversion, Hopter temporarily
elevates the priority of the panicking task to match that of
the highest-priority one among the blocked tasks, until the
mutex is released. This approach is made feasible by running
the stack unwinder within the context of the panicking task.
Hopter also provides its own Mutex type. In contrast to

std::sync::Mutex, Hopter’s Mutex does not automatically
poison during unwinding. The standard one does so to prop-
agate the panic across the threads accessing the same Mutex.
This strategy conflicts with Hopter’s goal to resolve the
panic and minimize its impact. In contrast, Hopter conveys
the panicking state via the panicking() function, similar to
std::thread::panicking(), which returns true only during
unwinding. As a result, a program can opt to change its
behavior upon detecting a panic.

4.4 Recover From Handler Panic
Hopter further tolerates panics originating from interrupt
handlers. These handlers react to events of peripherals. Com-
mon peripherals on microcontrollers include timers, DMA
engines, and communication buses like USART, I2C, and
SPI. Application developers supply most of these handlers,
which often involve HAL function calls to acknowledge the
interrupt and reconfigure hardware states, and may also
include additional logic, such as pushing recently received
data into a data channel. The complexity of these handlers
necessitates Hopter addressing potential panics that may
originate from them, but by applying different mechanisms
and optimizations than those for tasks.
Hopter recovers from handler panics by wrapping ev-

ery handler function with catch_unwind_with_arg(). The un-
winder executes within the context of the panicking handler.
The overhead of wrapping handler functions is minimal in
the common non-panicking scenario, consisting of only 6
instructions on ARMv7-M. Unlike recovering from panics in
tasks, Hopter does not automatically re-execute a panicking
handler. Subsequent operation depends on whether the in-
terrupt requires explicit acknowledgment: If the interrupt
requires explicit acknowledgment, the pending interrupt will
invoke the handler again after Hopter catches the panic; oth-
erwise, for instance in the case of SysTick, the interrupt will
invoke the corresponding handler at the next interval.
It is necessary for Hopter to mitigate the impact of one

panicking handler on others, especially because all interrupt
handlers share the same kernel stack. Specifically, when a
high-priority interrupt handler panics, it will prevent the
invocation of low-priority ones during unwinding. The time-
consuming procedure of stack unwinding may compromise
the prompt handling of low-priority hardware events. The
general idea still applies that Hopter should reduce the pri-
ority of the panicking interrupt handler, but it necessitates
additional logic to prevent breaking other handlers.

IRQ A
Priority: 4

IRQ B
Priority: 3

IRQ C
Priority: 2

Growth

(a)

IRQ A
Priority: 4

IRQ B
Priority: 3

IRQ C
Priority: 7

IRQ B
Priority: 3

(e)(b)

IRQ A
Priority: 7

IRQ B
Priority: 3

IRQ C
Priority: 2

IRQ A
Priority: 7

IRQ B
Priority: 7

IRQ C
Priority: 2

(c) (d)

IRQ A
Priority: 7

IRQ B
Priority: 7

IRQ C
Priority: 7

IRQ D
Priority: 5

Figure 3. Reducing the priority of a high-priority handler may
cause re-entrance of other active interrupt handlers. Correct man-
agement requires reducing the priority of all active handlers. A
larger number represents lower priority.

Hopter reduces the priority of all active interrupt handlers
when the currently running one panics. More specifically, it
reduces the priorities of the handlers with lower priorities
first, moving from the bottom of the stack to the top. For
instance, in Figure 3(a), interrupt handler A is preempted
by B, which is in turn preempted by C based on their priori-
ties. When handler C panics, Hopter changes the priorities
as depicted in Figure 3(b)-(d), and then the pending inter-
rupt D can nest atop. After catching the panic, the priority
restoration occurs in reverse order. Essentially, the relative
order of the priorities of active interrupt handlers must not
be inverted.

Hopter employs the above approach in order to prevent the
risk of re-entrance for interrupt handlers. Consider the naive
approach that simply reduces the priority of the panicking
interrupt handler C. If interrupt B is not yet acknowledged
to the hardware, doing so will cause its handler to be imme-
diately invoked again, resulting in re-entrance, as shown in
Figure 3(e). This situation may cause the re-entering B han-
dler to observe inconsistent states or even lead to deadlock
if it attempts to acquire an already-held lock.

Nonetheless, our optimization cannot prevent a panicking
interrupt handler from affecting other active handlers. Fortu-
nately, the probability of a panicking high-priority interrupt
handler preventing the execution of preempted low-priority
ones is minimal, as interrupt handlers are rarely nested at
runtime. However, it should be noted that a panicking in-
terrupt handler will block all tasks from executing since
the CPU cannot return to thread mode until the handler’s
panic is caught. Thus, it remains advisable to prioritize the
correctness of interrupt handlers.

5 Panic Recovery in a Flying Drone
We demonstrate the feasibility and performance of Hopter
recovering from Rust panics by deploying it to Crazyflie [3],
a COTS miniature drone.

5.1 Hardware Platform
Crazyflie, shown in Figure 4, is powered by an STM32F405RG
microcontroller based on ARMv7-M, and is outfitted with
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Figure 4. Crazyflie 2.1, a COTS miniature drone originally with
FreeRTOS.
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Figure 5. Data flow of Hopter’s flight control application written
in safe Rust, based on that of the original Crazyflie.

various sensors: BMI088 connected through an I2C bus for
6-axis inertial measurement, VL53L1x connected through
another I2C bus for height measurement using vertical laser
reflection time-of-flight, and PMW3901 connected through
SPI bus for horizontal movement detection based on optical
flow. The CPU executes instructions directly from flash with
prefetch acceleration.

5.2 Flight Control Application
Closely following Crazyflie’s original flight control applica-
tion (written in C for FreeRTOS), we develop a flight control
application in safe Rust for Hopter. The application consists
of six periodical tasks, as depicted in Figure 5(a), and also six
interrupt handlers, showed as an example in Figure 5(b). We
associate a dedicated task to each sensor responsible for read-
ing raw data and converting it into a format understandable
by the other tasks. The PMW3901, VL53L1x, and BMI088
sensors are read at frequencies of 50 Hz, 25 Hz, and 1000 Hz,
respectively. The processed data is then sent through data
channels to the state estimator and stabilizer tasks, both
running at 1000 Hz. The state estimator task leverages the
Kalman filter to estimate the drone’s position, velocity, and
attitude. The stabilizer task combines the state information
with the control commands being sent at 10 Hz to generate

the power signals for the four motors, aiming to keep the
drone steady in the air while following the commands.

All the tasks of the flight control application run under soft
real-time constraints. During flight, the application controls
the motors to sustain an unstable equilibrium, wherein a
minor disturbance, if left uncontrolled, can lead to a loss
of balance. In practice, such disturbances may manifest as
missed sensor readings or slight delays in state estimation
updates. Although they may not trigger an immediate drone
crash, as the error accumulates, the system will start from
instability and finally end with catastrophic loss of control
if correction is not applied timely by the control application.

5.3 Evaluation Results
We demonstrate Hopter’s ability to recover from panics by
deliberately inserting panic!() statements to simulate unex-
pected software or hardware faults while the drone is set to
hover at half a meter above the ground.

We first place the panic!() statementwithin each of the six
tasks, causing them to panic at one-second intervals. Specifi-
cally, we place the panic statements in deep function calls,
emulating a worst-case scenario, where the unwinder must
clean up many functions. The drone successfully takes off
and maintains its hover, withstanding the periodical panics,
without any noticeable disturbances. Only when panicking
in the stabilizer task, the drone slightly rotates along the
yaw axis for ten degrees each time it panics, because the
stabilizer task directly manipulates the power distribution of
the motors. Notably, the drone can withstand an additional
20-millisecond delay in the unwinding path of the stabilizer
task, whereas, without concurrent restart as described in
§4.3, the drone would tumble over immediately after taking
off.

Moreover, we showcase Hopter’s recovery from interrupt
handler panics by introducing a PendSV interrupt and placing
panic!() within its handler. The test code triggers PendSV

every second, and we introduce a delay of two milliseconds
in the unwinding path to emulate a tough scenario. We also
configure PendSV to have the highest priority among all in-
terrupts, which includes other four DMA interrupts, a high-
precision timestamp timer interrupt, a USART interrupt, and
the SysTick interrupt. The drone withstands the panic while
hovering without noticeable disturbance. However, without
reducing the priority of the panicking PendSV, as described
in §4.4, the system quickly becomes unresponsive due to a
drifted system clock arising from missing SysTick interrupts,
resulting in a drone crash.

Finally, we find the CPU and storage overhead introduced
by unwinding to be moderate for Hopter running the flight
control application. The CPU usage increases slightly from
38.0% to 40.6% when there is no panic, primarily because
enabling unwinding precludes certain compiler optimiza-
tions. The storage overhead is smaller than that of Theseus.
Table 3 illustrates the size increase due to stack unwinding.
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Table 3. Storage overhead for unwinding in Hopter. Code size
includes the interrupt vector table and .text section. Data includes
.rodata and .data section. Exception table is only present when
unwinding is enabled, including .ARM.exidx and .ARM.extab section.

w/o Unwind w/ Unwind Unwinder
Code 169.00 KB 199.00 KB 13.29 KB
Data 10.50 KB 12.05 KB 1.26 KB
Exception table 0 KB 15.16 KB 0 KB
Total 179.50 KB 226.21 KB 14.55 KB

Out of the total 46.71 KB overhead, 14.55 KB comes from the
unwinder and the restart logic. This constant overhead is
significantly smaller than that of Theseus, partially because
EHABI simplifies the representation of the exception table
on embedded ARM. This simplification not only facilitates
the parsing logic in the unwinder but also reduces the rela-
tive overhead from the exception table, amounting to only
6.7% in the final binary compared to 12.2% in Theseus. Nev-
ertheless, it is important to acknowledge that the overall
simplicity of Hopter, when compared to Theseus, likely con-
tributes to the smaller overhead observed. As expected, the
storage overhead of unwinding in Rust is more than an order
of magnitude smaller than in C++ as reported by Renwick et
al. [20], because Rust panic has simpler semantics and only
signals fatal error.

6 Related Work
Stack unwinding. Existing OSes running on more pow-

erful machines have already integrated stack unwinders into
the kernel. The Linux kernel incorporates a stack unwinder
aimed at providing stack trace information when a kernel
oops happens; it does not employ the unwinder for resource
cleanup. Notably, Linux utilizes an alternative exception ta-
ble format called ORC, which results in a 50% size increase in
exchange for 20x faster execution of the stack unwinder than
the DWARF format [17]. However, ORC is overly simplified
in that the compiler with optimization can potentially gener-
ate code with a stack frame indescribable by ORC. Theseus, a
recent Rust-based OS, adopts a stack unwinder for resource
cleanup upon panics. It restarts a task after unwinding the
latter’s stack. However, Theseus’ implementation is within
the context of powerful x86_64 machines and does not take
real-time constraints into account.
Wary of the overhead of stack unwinding, Renwick et

al. [20] eschew a separate stack unwinder. Instead, they clev-
erly embed stack unwinding logic within the normal control
flow by forcing all function returns to indicate whether an ex-
ception has occurred. While this improves the performance
of exception handling, it adds overhead to all normal code
paths, a questionable tradeoff given that exceptions are sup-
posed to happen infrequently.

Fault recovery. Previous studies have explored various
approaches for recovering from fatal errors. As mentioned
earlier, checkpoint/restore is a popular approach with server
systems, e.g., [14]. Because execution between checkpoints
must be transactional, high memory overhead arises from
maintaining unmodified variable copies. Another approach
is record/replay, which requires a well-defined interface for
recording, e.g., [22], and long latency due to replay, not suit-
able for mission-critical embedded systems.
Many systems track the resources allocated to applica-

tion tasks in order to reclaim the resources when a task
terminates with a fatal error. For example, the kernel code
of Linux and Tock [16] tracks the resource allocated to a
task (process). However, these kernels can only recognize
the resources provided by themselves, like an opened file
or network socket, but treat application-defined resources
as raw bytes. Therefore, these kernels are unable to grace-
fully shut down an application session, for example. On the
other hand, Microreboot [5] can track application-defined
resources. However, the tracking is based on lease, which
is not applicable to embedded systems with real-time con-
straints, because the restarting task must wait until the lease
of the panicking task expires.
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