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Abstract
Microcontrollers are the heart of embedded systems. Due to cost
and power constraints, they do not have memory management
units (MMUs) or even memory protection units (MPUs). As a result,
embedded software faces two related challenges both concerned
with the stack. First, in a multi-tasking environment, physical mem-
ory used by the stack is usually statically allocated per task. Second,
a stack overflow is difficult to detect for lower-end microcontrollers
without an MPU.

In this work, we argue that segmented stacks, a notion investi-
gated and subsequently dismissed for systems with virtual memory,
can solve both challenges for embedded software. We show that
many problems with segmented stacks vanish on embedded sys-
tems and present novel solutions to the rest. Importantly, we show
that segmented stacks, combined with Rust, can guarantee memory
safety without MMU or MPU. Moreover, segmented stacks allow
memory to be dynamically allocated to per-task stacks and can im-
prove memory efficiency when combined with proper scheduling.

1 INTRODUCTION
Most widely used software uses the contiguous stack, which oc-
cupies a contiguous region of memory. In multi-tasking systems,
every task has a contiguous stack with a statically determined max-
imum size. For example, in 64-bit Linux, a thread has a default stack
of 8 MB of virtual memory. In embedded systems without virtual
memory, a task can have a stack of 100s or 1000s of bytes of physical
memory.

Contiguous stacks raise two challenges for embedded software.
First, without virtual memory, they are inefficient because physical
memory is statically allocated to them. In §2, we report a case study
with the firmware of a commercial miniature drone. We show that
most of the allocated stack memory can remain unused for most
of the time. This can be problematic because modern embedded
systems can have many tasks, multiplying this inefficiency.

Second, without virtual memory, stack overflows become tricky
to detect. For microcontrollers with an MPU running multiple tasks,
stack overflows can be detected by either allocating a contiguous
memory region for each task and reconfiguring the MPU at context
switch, as in Tock [15], which sacrifices memory efficiency, or
adding stack probing instructions, which can incur higher overhead
for large stack frames and is not correctly implemented by major
embedded compilers, e.g., ARM GNU [25] and LLVM. Moreover,
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many low-end microcontrollers do not have an MPU, e.g., those
running the wireless network stack in Ambiq Apollo Blue series [1]
and Nordic nRF52 series [22], which makes stack overflows difficult
to detect. For embedded software on suchmicrocontrollers, memory
safety remains an elusive goal, even whenwritten in a safe language
like Rust.

In this paper, we consider a rather old idea, called segmented
stack [14], toward solving the above two challenges for embedded
software. Unlike the contiguous stack, a segmented stack consists
of stacklets that are dynamically allocated from the heap (See §3). It
relies on compiler-inserted function prologue to detect impending
stack overflows and grows on-demand, and it also frees the memory
when the offending function returns. The segmented stack is known
to suffer in performance and memory efficiency [12, 13, 24]. Not
surprisingly, while it is supported by both GCC and Clang, it is
rarely used in mainstream systems. New languages such as Go and
Rust have dropped their support for the segmented stack [12, 24].

In §4, we present an in-depth investigation into why the seg-
mented stack suffers in performance and memory efficiency, con-
firming a known problem, i.e., hot-split, and revealing many new
ones. In §5, we show that many of the issues with the segmented
stack vanish on microcontroller-based systems while achieving
memory safety and creating new opportunities for memory effi-
ciency. In §6, we report a preliminary implementation of the seg-
mented stack for Rust and C, with a novel solution to the hot-split
problem and other optimizations. In §7, we report preliminary
experimental results that show the performance of our implemen-
tation of segmented stack is within 94% of that of contiguous stack.
Our current implementation, however, doubles the maximum stack
usage for a task. We show this overhead can be substantially re-
duced with some ABI change. More importantly, when tasks are
scheduled properly such that they do not reach maximum stack
usage at the same time, the actual memory usage by all stacks can
be still much lower than that by statically allocated stacks. This
introduces a new dimension into the task scheduling problem.

In summary, this work makes the following contributions:
• A small case study to reveal the problem with the contiguous
stack for embedded software.

• An in-depth analysis of problems with the segmented stack
and their (ir)relevance to embedded software

• A preliminary implementation of the segmented stack for
embedded C and Rust with important optimizations to eval-
uate its feasibility on microcontroller.

2 A CASE STUDY OF EMBEDDED STACK
We use the firmware of Crazyflie [11], an open-source, commer-
cially available miniature drone, as an example to shed insight into
the memory usage by stacks in embedded software. The firmware is
based on FreeRTOS [8], a widely used open-source embedded oper-
ating system that supports statically allocated per-task contiguous
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Task name Period Min stack usage Max stack usage Sleep time Allocated stack
Stabilizer 1 ms 8 B 384 B 95.9% 3600 B
Sensors 1 ms 88 B 420 B 46.9% 2400 B
CRTP RX 3.5 ms 36 B 168 B 99.2% 2400 B
CRTP TX ∞ ms 36 B 104 B 100.0% 1200 B

Table 1: Stack Usage by Crazyflie Core Tasks

stacks. The Crazyflie firmware implements its core algorithm and
sensor drivers in 21 tasks.

We analyze four core tasks as shown in Table 1. We derive stack
usage by statically analyzing the disassembly code. The maximum
stack usage is the greatest total size of stack frames in all feasible
code paths, while the minimum stack usage is the size of context
that must be carried over every task sleep. The allocated stack
size of each task is determined by the configuration macros. We
record the temporal stack behavior by gathering runtime traces
while the drone hovers. When a task sleeps on a periodic timer,
hypothetically it should keep its stack at the minimum usage, but
in reality it takes an extra 200+ bytes, due to the stack frame of
system call library functions and the exception frame and register
context pushed by FreeRTOS onto the task’s stack. Despite this, we
believe with code refactoring the stack usage can be reduced close
to the hypothetical minimum if we store the context outside of the
user stack and streamline the library functions.

We have the following observations from our case study.

• Stacks use substantial memory. The stacks of all 21 tasks occupy
45600 bytes, which is 32% of the total system memory usage.

• The maximum stack usage is significantly smaller than the allo-
cated stack size for all four tasks. This is likely because deter-
mining the maximum stack usage is difficult and the developers
chose to leave a large margin to avoid stack overflows.

• Tasks spend most time blocked with minimum stack usage, which is
significantly smaller than the maximum. The sensors task is an
exception, which blocks on the DMA system call when the stack
usage is high. The CRTP TX task is driven by outgoing packets,
which happen rarely.

• Large arrays and structures are commonly declared as static vari-
ables. Some of them do not necessarily require a static lifetime,
e.g., the sensorData struct in the stabilizer task. However,
changing them to stack variables does not make any difference
in memory usage when the stack is statically allocated.

The above observations highlight the memory waste of statically
allocated, contiguous stacks: while the task stack usage is dynamic
and low on average (over time), the system has to dedicate a chunk
of memory to the stack based on the maximum usage, no matter
how briefly the task may actually use that much stack, and usually
with a large margin. This motivated us to investigate an alternative
stack design: segmented stack.

3 WHAT IS SEGMENTED STACK?
The segmented stack is a type of call stack, which was initially
invented for efficient first-class continuation implementation [14]. It
detects an upcoming overflow in software and avoids it by growing
by a contiguous chunk of memory, called a stacklet. A runtime
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Figure 1: Different states of a segmented stack

library allocates the stacklet, frees it when the offending call returns,
and tracks allocated stacklets as a linked list.

GCC and Clang implement the segmented stack by prefixing
each compiled function body a prologue that at runtime exam-
ines the remaining free space in the stack. If there is enough, the
prologue proceeds to the function body. Otherwise, it invokes the
runtime library to obtain a new stacklet first. Both GCC and Clang
depend on the runtime library provided within libgcc [9, 18]. To
compile code with the segmented stack, one only needs to set the
-fsplit-stack option flag.

Below we explain the implementation of segmented stack in
libgcc. Figure 1 shows how the stack, represented by the linked list
of stacklets, changes.

Figure 1(a) shows that the stack starts with three stacklets with
the current stacklet at the end of the linked list. When a function
is called, the function prologue calculates the new stack frame
boundary by subtracting the required stack frame size, which is
known at compile time by the compiler, from the current stack
pointer. It then decides whether to request a new stacklet or not by
comparing the new stack frame boundary with the current stacklet
boundary stored in the thread local storage (TLS).

If the new stack frame boundary is within the current stack-
let boundary, the prologue follows the Fast Path: it continues to
the function body. The function’s stack frame lives in the current
stacklet, as shown in Figure 1(b)’s striped frame. When the function
returns, it cleans its stack frame by simply moving the stack pointer:
the stack transits from Figure 1(b) to (a).

Otherwise, the prologue follows the Slow Path: it invokes the
runtime library, which allocates a new chunk of memory. The
allocation must be of at least a minimum size and comply to a
granularity, both of which are the memory page size (4 KiB) on
x86_64. The library then copies the arguments from the previous
stacklet to the new one, sets the stack pointer to the new stacklet,
and updates the stacklet boundary record in the TLS. The library
finally calls into the user function body. Figure 1(c) illustrates the
resulting linked list of stacklets, with the striped frame representing
the function’s stack frame. When the function returns, it will return
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to the runtime library, which will free the current stacklet and adjust
everything back to the previous stacklet. The stack would transit
back to Figure 1(a).

The runtime library caches freed stacklets to serve subsequent
requests, as shown in Figure 1(d). If the request size exceeds the
size of the next cached stacklet, all cached ones are returned back
to the heap before the runtime library makes a new allocation,
transitioning to Figure 1(e) where the striped frame triggers the
new allocation.

4 WHY NOT SEGMENTED STACK
In this section, we present a set of previously unknown problems
with the segmented stack that may have contributed to its poor
memory efficiency and performance reported in the past. We also
confirm the negative impact of hot-split, a well-known problem
for the segmented stack [12, 13, 24]. Later we will show that these
problems either largely vanish or can be solved on microcontroller-
based embedded systems.

Internal Fragmentation due to ABI Compatibility. The segmented
stack intends to improve memory efficiency by allocating memory
for the stack dynamically. On Linux, however, each stacklet must
reserve considerable space to conform to System V ABI and to
cooperate with Linux dynamic linker and signal handlers.

System V ABI for x86_64 [26] allows a program to use the imme-
diate 128 bytes beyond the stack top, called the red-zone, without
adjusting the stack pointer, saving two instructions in leaf functions.
To conform to this ABI, every stacklet must reserve 128 bytes for
the red-zone.

Dynamic linking requires every stacklet to reserve even more
free space. A function call may invoke the dynamic linker for run-
time symbol resolution, but the dynamic linker is not aware of the
segmented stack so is unable to request a new stacklet. Thus, every
stacklet’s reserved space must also be large enough to accommodate
the need of the dynamic linker. To the knowledge of the authors,
the stack space needed by the dynamic linker is not documented.

Signal handling in Linux similarly requires free space beyond
the stack top. The kernel pushes the thread execution context onto
the user stack by default before returning control to the userspace
signal handler. The context can take up to 3174 bytes with the
presence of AVX512 SIMD registers.

Considering all above, libgcc reserves 3584 bytes in each stacklet
on x86_64 Linux [17]. The fragmentation ratio can be as high as
87.5% when 4 KiB stacklet is used.

Poor Compatibility with Legacy Code. If code compiled with the
segmented stack must be linked with conventional code with the
contiguous stack, the compiler tool-chain must deal with the fact
that the conventional code cannot allocate a new stacklet. Before
the control is transferred from the code with segmented stack to
the conventional code, the linker must ensure that the stacklet in
use is sufficiently large. Specifically, when the linker detects that a
function compiled with the segmented stack calls into conventional
code, it rewrites the function prologue to ensure large free space in
the stacklet, leveraging the knowledge that the prologue follows
a specific instruction pattern. We note that the linker cannot add
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Figure 2: The hot-split problem. The program execution
time has a general trend down as the stacklet size increases,
but rebounds when hot-split is triggered.

a prologue to the conventional code because doing so may break
PC-relative instructions.

This approach, however, faces four problems. (i) First, the default
GCC linker ld.bfd does not rewrite the prologue although newer
ld.gold and ld.lld do. With it, overflows are likely because stacklets
are usually small. (ii) Second, the approach is not foolproof because
a conventional function using significant stack space can still over-
flow the stacklet. Even worse, a stacklet overflow is more dangerous
than a contiguous stack overflow, because no guard page sits at the
stacklet boundary. It can happen silently, forming a stack clash [23].
(iii) Moreover, the approach reduces memory efficiency because
the stacklet before the control transfer to the conventional code
must have abundant free space, e.g., larger than 64 KiB in GCC [17],
whose effect is further amplified by stacklet caching. (iv) Finally, it
may break legacy code that requires an executable stack [10]. libgcc
marks allocated stacklets as always non-executable due to safety
concerns.

Sub-optimal libgcc Implementation. We discovered that the cur-
rent implementation of the segmented stack in libgcc for x86 and
x86_64 intentionally introduces a missed return address predic-
tion [16] that may significantly degrade runtime performance. The
code path is triggered when code compiled with the segmented
stack is linked with conventional code with the contiguous stack.
We improved the implementation for x86_64, eliminating themissed
return address prediction by leveraging %r10 and %r11 as scratch
registers. According to our measurement of a JSON parser program
with frequent calls to C++ standard libraries without the segmented
stack, this optimization reduces the performance overhead of the
segmented stack from 113% to 24%.

Hot-Split. Also known as stack-thrashing, it occurs when a leaf
function call in a tight loop follows the slow path.We reproduce hot-
split with an artificial workload written in C++ where the program
randomly allocates some stack frames and then runs a tight loop
calling a leaf function. We vary the stacklet size from 4 KiB to 128
KiB by compiling the code with patched GCC, enforcing the size
in libgcc/config/i386/morestack.S. Figure 2 shows that the
program execution time fluctuates with a general trend down as
the stacklet size increases. When hot-split is triggered, as when the
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stacklet size is 40 KiB, the program runs about 60% slower than that
with 36 KiB.

5 WHY SEGMENTED STACK ON MCUS
We next show that many of the problems with the segmented stack
vanishes on embedded systems. More importantly, the segmented
stack would bring important benefits to such systems in addition
to memory efficiency.

5.1 Disadvantages vanish
Less fragmentation in stacklet. It is usually unnecessary to reserve

large free space in stacklets for microcontroller-based systems,
unlike on Linux. ABIs designed for MCUs, e.g., ARM EABI [3], do
not employ red-zone. Executable images for microcontrollers are
usually fully linked at compile time, obviating dynamic linking.
User-provided callback functions can run with a separate stacklet
because the kernel is aware of the use of the segmented stack, unlike
Linux. Thus, there is no need for reserving large free space in a
stacklet on microcontrollers.

However, each stacklet still must include an unavoidable over-
head to save the previous stack pointer and the pointer to its prede-
cessor stacklet. Extra reserved space might be necessary depending
on the specific hardware architecture and segmented stack imple-
mentation. On ARM Cortex-M3/4, register %r4 and %r5 are used to
pass the requested stack frame size and stack argument size to the
runtime library and thus must be pushed into the stacklet reserved
space. %lr must also be saved to preserve the return address. That
is in total 20 bytes.

Additional reserved space might be required to handle interrupts.
ARM Cortex-M pushes the interrupt frame to the user stack before
invoking an interrupt handler, thus extra 32 bytes are needed. On
the other hand, x86_64 pushes the interrupt frame to the kernel
stack, while ARM Cortex-A and Cortex-R depend on banked regis-
ters to preserve the interrupt site, all obviating additional reserved
space in stacklet.

Tighter control of code base. Microcontroller developers often
have full source-level control of the code base, where the executable
image is compiled completely from source code and not linked
against pre-compiled binary libraries. They can enable the seg-
mented stack for every function compiled, thus eliminate the need
to cooperate with code compiled with the contiguous stack. In the
case where a peripheral vendor supplies binary libraries, they can
provide a version compiled with the segmented stack.

Speed loss more acceptable. Microcontroller-based systems are
typically I/O bound and care more about predictability rather than
absolute speed. Additionally, the energy cost due to speed loss from
the segmented stack can be potentially compensated by energy
saving from using a smaller memory.We do note that the segmented
stack can complicate worse-case execution time (WCET) estimation
because it involves dynamic memory allocation. Accurate WCET
estimation is important for real-time scheduling so that an event
can be handled within a deadline. We believe that this problem
can be relieved with real-time dynamic allocation designs such as
TLSF [19].

5.2 Benefits emerge
Memory Safety by Compiler. Mostmicrocontrollers are not equipped

with memory management unit (MMU); instead, tasks share the
physical address space rather than private virtual address spaces.
Stack overflows in one task can easily cause silent data corruption
in another task or the kernel.

A programmer can use the memory protection unit (MPU) to
solve the problem by specifying access permissions to memory
segments for a task. The MPU will trap a stack overflow if it leads
the task to access a disallowed memory segment. This approach,
however, either suffers from poor memory efficiency or incurs
higher runtime overhead for functions with a large stack frame.
One implementation, as adopted by Tock OS [15], is to place the
down-growing stack at the lowest address of all allowed memory
segments of a task. It requires a contiguous chunk of memory to
be allocated for a task upon creation, which is less efficient than
dynamic allocation supported by our approach.

Another implementation, as adopted by some compilers, is to
add stack probing instructions at compile time, which can incur
higher runtime overhead than the segmented stack prologue. These
instructions probe the stack frame, i.e., writing locations in the
frame separated by a constant interval, before the function body
runs. Because the smallest segment is 32 bytes on ARM Cortex [2],
the probing is required when the stack frame is larger than 32 bytes.
More importantly, there will be one probing for each every 32 bytes
of the stack frame. That is, if the stack frame has 𝑁 bytes, there will
be ⌊𝑁 /32⌋ probings. On ARM Cortex-M3/4, 2 to 3 instructions are
needed for each probing. In contrast, the segmented stack prologue
is per-stack frame. In the fast path, it takes 7 instructions, of which 1
to 3 can be optimized out for common cases. As such, the segmented
stack has better performance in guarding overflows for functions
with large stack frames (>96 bytes). During our investigation, we
discover that ARM GNU (arm-none-eabi-gcc) erroneously config-
ures the probing interval as 4 KiB, rendering the probing almost
useless for embedded software. This is also noted by others [25].
We also find that LLVM silently ignores the stack probing option
-fstack-check for ARM embedded. As a result, the popularity of
compiler-based stack probing is questionable in embedded software
where stack overflows remain a hard, practical problem.

Evenworse, many low-endmicrocontrollers are not even equipped
with an MPU. For them, compiler enforced memory safety provides
a promising alternative approach. For this, the segmented stack
complements language-level memory safety, like safe Rust, by pre-
venting overflows by the compiler generated prologue.

Hardware and Energy Efficiency. The segmented stack helps to
reduce the size of SRAM required on chip for a given set of tasks
because SRAM can be shared by stacks temporally. Smaller SRAM
is beneficial in two ways. First, hardware can be made cheaper. The
savings can be nontrivial because embedded systems are usually
produced in large numbers. Second, power consumption is reduced.
Since SRAM must be powered to retain data, the smaller its size,
the less power it consumes. As we show in §2, when the contiguous
stack is used, the system wastes energy via statically allocated
but unused stack space. The segmented stack would substantially
reduce such waste.

120



Bringing Segmented Stacks to Embedded Systems HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

Stacklet
Metadata

%r9

Data & BSS HeapKernel
Stack

Grows

Figure 3: System SRAM address space layout. Heap in-
cludes segmented stacks and dynamic memory. Unlike
Linuxwhere each threadhas its ownkernel stack, embedded
kernels usually employ a single kernel stack for all tasks.

6 IMPLEMENTATION
We next describe the first known implementation of the segmented
stack for microcontroller and a novel technique to alleviate hot-
split. Our implementation aims at ARM Cortex-M4 and supports
C and Rust by patching LLVM ARM backend (18 lines). We imple-
ment the segmented stack runtime library as supervisor call (SVC)
handlers in C (500 lines). We also patch the Rust frontend (rustc)
to include a new function attribute no_split_stack to suppress
the generation of segmented stack prologue for special functions
(10 lines), whereas the C frontend (clang) already has this attribute.

Below we highlight some implementation details that render the
segmented stack practical on microcontrollers.

Guard against stack overflows completely. We prevent stack over-
flows for both user code running with the segmented stack and
kernel code running with the contiguous stack. The kernel code
that allocates and switches stacklets cannot run with the segmented
stack. To prevent the kernel code from overflowing the contiguous
stack, we use a single kernel stack and place it at the lower border
of the SRAM region, below which the address is mapped to Flash
thus not writable, so that we can trap kernel stack overflows with a
hardfault, inspired by Drone OS [27] and Tock OS [15]. User tasks
run with segmented stack supported by the system heap, inher-
ently immune to stack overflows. The system address space layout
is shown in Figure 3.

Retrieve stacklet boundary swiftly. We employ the read-write
position independence (RWPI) relocation model to support fast
retrieval of the stacklet boundary, since every function prologue
reads and compares to this value. RWPI reserves register %r9 to
point to the start of the .data section. We place the stacklet bound-
ary with other metadata at a fixed negative offset from %r9 so that
reading it takes only a single ldr instruction.

Alleviate hot-split memory-efficiently. The runtime library starts
with each function stack frame having its own stacklet of exactly
right size, and then merges stacklets to the extent just enough to
prevent hot-split, adapting to the program’s runtime behavior as
follows. The key insight is that the detection of a hot-split event
can prevent future ones for periodical tasks. If the runtime library
detects that a function F directly or indirectly calls G and G experi-
ences hot-split because the stacklet used by F cannot accommodate
G, it calculates the difference between the remaining free space in
the stacklet for F and G’s requested stack frame size, denoted as 𝛿 .
Later when F is invoked another time, the runtime library allocates
its stacklet with additional 𝛿 bytes to prevent G from hot-splitting
again.

7 EVALUATION
We evaluate our implementation on the STM32F407VG microcon-
troller, which features an ARM Cortex-M4 core running at 168
MHz, 1 MiB Flash, and 128 KiB SRAM. We demonstrate that the
segmented stack can achieve decent performance along other ben-
efits it brings.

We port CoreMark [4], an industry-standard benchmark that
measures the performance of embedded CPU, to our microcon-
troller. The benchmark contains three types of workload: matrix
multiplication, linked list manipulation, and state machine transi-
tion. Matrix multiplication primarily works with loops while func-
tion calls are rare. On the other hand, function calls are abundant
in the other two types. Each benchmark iteration goes through the
three types. The performance is reported in the number of iterations
per second.

Performance. We show CoreMark performance under 5 configu-
rations in Table 2. Contiguous stack with static relocation is the con-
ventional setup and delivers the best runtime performance. RWPI
relocation introduces an extra layer of indirection when addressing
global or static data, but its overhead is negligible. Segmented stack
always works with RWPI relocation. The naive version simply allo-
cates a stacklet for every function’s stack frame. Prior work also
called it “linked frames” [7]. It performs the worst because every
function call goes through the slow path unless a function requires
no stack frame. The optimized segmented stack implementation
incorporates the hot-split alleviation algorithm, which boosts its
performance to be comparable with contiguous stack. The overflow-
check-only version allocates a huge initial stacklet prior to running
the workload, using the prologue only to guard against overflows
but not intending to allocate a new chunk. The overhead is incurred
by only the function prologue.

Memory efficiency. The segmented stack increases the maximum
stack usage by a task because it adds metadata and reserves ex-
tra space in each stacklet to support existing call convention and
interrupt mechanism. Our implementation introduces a 60-byte
overhead per stacklet: 36 for the interrupt frame and its alignment
padding, 12 for the stacklet metadata, and 12 for saving spilled
callee-saved registers. Thus, the maximum memory usage of the
segmented stack is greater than that of the contiguous stack, as
shown in Table 3 (Optimized).

This overhead, however, can be substantially reduced if two
changes to the ABI are allowed (Ideal): (i) %r4 and %r5 are made
caller-saved; and (ii) interrupt frames are saved to the kernel stack,
which is actually the case with x86_64, or banked in register, as
in ARM Cortex-A or Cortex-R but unfortunately not Cortex-M.
With this ideal ABI, the memory overhead of each stacklet can be
reduced to 12 bytes: 8 for stacklet metadata and 4 for spilled %lr
register. We calculate the numbers for the hypothetical cases in
the right columns, when we make %r4 and %r5 caller-saved, and
ideally when the interrupt frame is also moved out of the user stack.

More importantly, when tasks are bursty or scheduled properly
such that they do not reach the maximum stack usage at the same
time, the overall memory usage by all stacks can still be much lower
than that by statically allocated stacks. For example, 500 bytes is
enough to hold segmented stacks for the four Crazyflie tasks in
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Contiguous Stack Segmented Stack
Static RWPI Naive Optimized OF Check Only
379 379 147 357 361

Table 2: CoreMark Iterations per Second

Contiguous Stack Segmented Stack
Static Optimized Caller Save %r4 %r5 Ideal
468 B 920 B 856 B 536 B

Table 3: CoreMark Stack Maximum Size

Table 1, almost 20x smaller than the current usage with contiguous
stacks. This suggests an interesting research opportunity into joint
task scheduling and memory management.

8 RELATEDWORKS
Stack Memory Safety. Stack overflows can be caught by either

hardware or software-based approaches. Some hardware based
approaches employ the MPU to catch stack overflows, as in Tock
OS [15] and the MPU port of FreeRTOS [8]. Others, e.g., Drone
OS [27], uses a single stack for all tasks, places it at the lower end
of the SRAM region, and lets it grow downwards.

Software-based approaches can be further categorized into unre-
liable and reliable ones. Unreliable ones allow some stack overflows
to go undetected. FreeRTOS without MPU can optionally perform
unreliable overflow detection by examining the stack pointer of the
running task at each system tick. An overflow goes undetected if its
duration does not span across a system tick. Reliable software-based
approaches employ instrumented code to check the stack pointer
at runtime. The instrumentation can be done either by source-to-
source code transformation as in Capriccio [28] or through compiler
as in MTSS [21] and our work. To reduce the runtime overhead,
Capriccio and MTSS analyze the call graph statically to eliminate
the instrumented code in some functions and merge the check into
their caller functions. In contrast, our approach learns the function
call pattern at runtime, in order to reduce the runtime overhead for
functions experiencing hot-split. It can support dynamically loaded
code, whereas those based on static analysis cannot. Moreover,
when merging stacklet allocations to alleviate hot-splits, our ap-
proach can achieve higher temporal memory efficiency than those
static approaches, thanks to runtime information.

StackMemory Efficiency. Efficient stackmemory usage is achieved
by allowing multiple tasks to share stack memory. Drone OS em-
ploys a single system stack and runs all tasks with it. A higher
priority task may preempt the running task and place its stack
frame on top of the preempted task’s frames. However, the pre-
empted task may only resume after the high priority task yields and
relinquishes its stack frames. Capriccio and our approach allocate
memory for the stack on-demand from the heap, allowing the most
flexible time-multiplexing of memory among stacks and dynamic
memory. MTSS allows a stack to overflow into unused space of
another stack, which essentially allows all stacks to share memory.

Other works advocate eliminating the stack in the thread. Pro-
tothreads [6] introduces the notion of local continuation so that
each protothread needs not a separate stack but shares a single
one. However, their implementation based on C macros prohibits
the normal use of stack variables because they cannot restore their
values across blocking points. UnStacked C [20] performs static
call-graph analysis and saves function activation records in global
static buffers. These approaches trade global static data for saved
stack memory, but since the memory for global static data are not
time-multiplexed, they are less memory efficient than Capriccio,
MTSS, and our work.

Segmented Stack Overhead. Farvardin and Reppy [7] recently
demonstrated that the performance of the segmented stack can be
close to that of the contiguous stack. They implemented a parallel
and concurrent subset of Standard ML, using different ways of
implementing the call stack. They reported the performance of
the segmented stack as within 10% of that of the contiguous stack
most of the time and even occasionally better, which matches what
we observe about our embedded Rust implementation, despite the
vastly different system contexts.

9 RESEARCH OPPORTUNITIES
Resource-aware scheduling. Dynamic memory allocation may

cause runtime memory exhaustion, which a robust system should
handle gracefully or prevent if possible. Tasks should be blocked on
allocation requests if memory has been exhausted. The possibility
of deadlock can be reduced by resource-aware scheduling, e.g.,
selecting the task that is likely to release memory very soon while
under memory pressure. Capriccio [28], a cooperatively scheduled
thread library, implements resource-aware scheduling by learning
at runtime a state machine for a thread with each state representing
a blocking point for the thread and annotated with its resource
usage. It updates the probability of each state transition as the thread
runs. This technique can be readily incorporated into preemptive
multi-task embedded software with the segmented stack: a state
can represent a point where memory is allocated or freed. Using
this state machine, the scheduler can know which tasks will soon
release or acquire memory by tracking their states. It might also
be possible to prevent memory exhaustion by improving Banker’s
algorithm [5], where the tasks are scheduled to avoid any resource
deadlock.

Compiler optimization of stack. Machine code generated by com-
pilers, e.g., GCC and Clang, keeps dead data in the stack frame
rather than immediately compacts the stack frame when variables
go out of their scopes. We believe the compilers choose to trade
memory efficiency for runtime performance because updating the
stack pointer as soon as a variable is dead will slow down the pro-
gram. However, with the segmented stack, having compact stack
frames will allow more tasks to run concurrently. Thus, there is a
trade-off between the task runtime speed and the maximum number
of concurrent tasks.

10 CONCLUDING REMARKS
We demonstrate the potential of the segmented stack to guarantee
memory safety solely by the compiler and to improve memory effi-
ciency by time-multiplexing the memory used as stack. We report
an implementation of the segmented stack for embedded C and Rust,
with runtime performance close to that of the contiguous stack. The
current implementation has noticeable memory overhead, which
can be greatly reduced by a re-design of ABI. Nevertheless, we
believe the segmented stack can still significantly save memory
under workloads with multiple bursty tasks.
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